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FOREWORD

This Monograph was produced in a pilot program at Oklahoma State

University in Stillwater, Oklahoma, under contract to the NASA Office

of Technology Utilization. The program was organized to determine the

feasibility of presenting the results of recent research in NASA Labora-

tories and under NASA contract in an educational format suitable as

supplementary material in classwork at engineering colleges° The Mono-

graph may result from editing single technical reports or synthesizing

several technical reports resulting from NASAIs research efforts.

Following the preparation of the Monographs, the program includes

their evaluation as educational material in a nun_er of universities

throughout the country. The results of these individual evaluations

in the classroom situation will be used to help determine if this

procedure is a satisfactory way of speeding research results into

engineering education.

ABSTRACT

The Monte Carlo Method of solving radial_t heat transfer problems

basically consists of following groups of photons around through a sys-

tem until they are either absorbed or lost. By using a large number of

photon groups the statistical behavior of the large group will approach

the behavior of an actual system. This Monograph discusses the techni-

que required to select photon groups, such that a given statistical

distribution will be achieved. An example problem is included, which

shows how the Monte Carlo technique can be used to solve problems where

energy is emitted and reflected in a non-diffuse or non-specular method.

i In particular it is assumed that the Fresnel type surface is present.

The Fresnel surface distribution is used as an example problem.

l ii
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INSTRUCTOR'S GUIDE FOR MONOGRAPHS

i. Educational level of the Monograph--Senior or beginning
graduate level.

2. Prerequisite course material--The course material required for

this Monograph consists of Introductory Material in Heat Transfer, Intro-

ductory Material in Differential Equations and Radiation Heat Transfer

Concepts up to Configuration Factors and Fresnel Equations.

3. Estimated number of lecture periods required--One hour of
lecture.

4. Technical significance of the Monograph--The material presented

in this Monograph represents the most advanced numerical technique for

the solution of radiation exchange problems. Monte Carlo methods have been

applied to the extremely difficult radiation problems involving non-diffuse

surfaces and real gases. By using the techniques described herein almost

any heat transfer problem can be solved at least in principle. The main

difficulty involved is that very much computer time may be required in

very complicated real problems.

5. New concepts or unusual concepts _llustrated--This Monograph

presents the Monte Carlo technique as originally developed for the

study of nuclear shielding problems, applied to radiation heat transfer.

6. How Monographs can best be used--

(a) It is suggested that approximately a one hour lecture

be given over the Monograph material.

_b) It is suggested that the class be assigned a b_,me

problem as indicated at the end of the Monograph whzch involves

the use of a digital computer.

(c) If possible, the students should be allowed to compare the

results of their Monte Carlo type solution to a problem solved

by another technique.

7. Other literature, Briefs or Monographs of interest--Monte Carlo

Solution of Thermal Transfer Through Radiant Media Between Gray Wall, by

J. R. Howell and M. Perlmutter, ASME Jour. Heat Trans. 86, no. 2, May

1964, pp. 169-179.: Radiant Transfer Through a Gray Gas Between Con-

centric Cylinders Using Monte Carlo, by M. Perlmutter, and J. R. Howell,

ASME Journ. Heat Trans. 86, no. 2, May 1964, pp. 169-179 and: Radiative

Interchange Factors by Monte Carlo by M. M. Weiner, et al. ASME Paper
65-WA/IIT-51.

8. Other reports reviewed by the editor in preparing this Monograph--

iii
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none.

9. Who to contact for further information--Technlcal Utilization

Officer, Lewis Research Center, Clev_land, Ohio.

i0. Note to Instructor: All uncolored pages of the instructors

Monograph are in the copies intended for student use.

iv
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MONTE CARLO METHOD

Monte Carlo techniques were developed as a way of treating pro-

blems in which the happenings at a given location are known, at least

in the form of statistical distributions, but in which the equations

that describe the interaction between locations are extremely diffi-

cult to solve. One example is the local neutron flux produced by the

diffusion of neutrons in the core, reflector, and shielding of a

nuclear reactor. Because the neutrons arising from the fission pro-

cess undergo different sequences of absorption, fission, and scattering,

a solution for the neutron flux at all points in a heterogeneous sys-

tem can be difficult. However, the frequency of events occurring along

the path of an individual neutron are fairly well understood. This

leads to the idea of following sample neutrons snd determining the

events aiong their paths by picking events at random from the appro-

priately weighted set of possibilities at each point. By letting each

neutron sample represent a group of real neutrons, and by following

enough samples, the flux at each point can be determined.

Of course, such a large number of simple calculations must be per-

formed that a digital computer becomes a necessity. However, the fact

that Monte Carlo depends on a large number of simple repetitive cal-

culations and decisions means that it is ideally suited for the com-

puter.

Application to Thermal Radiation

Applying the Monte Carlo method to thermal radiative transfer

problems involves setting up a physical model which characterizes

radiative processes. In neutron diffusion, sample neutrons obeying

kno_m scattering, absorption, and fission laws meet this need. In

radiation, the corollary sample particle is the photon. However, if
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the photon itself Is chosen as a particle to sample, the problem arises

that the wavelength, of the photon depends on its energy. It is more

convenient to choose a common energy for all samples to follow Using

this technique, each sample tben becomes a bundle of photons with the

same wavelength. Each sample can have a different number of photons

according to its wavelength. However, the total energy carried by

every bundle is the same.

With the_e bundles of energy as our samples, it becomes relatively

straight-forward to simulate r_diative processes.

For example, examine the euergy transfer between element dAI at

temperature TI and surface As, an infinite plane, at temperature T_= 0,

Fig,_e I. So that some previous statements about directional and

spectral properties _iii gain substance let element dAI ha,'e emittance

_ _SURFACE AREA, A2

Figure i. Geometry for example problem

¢1 " ¢i(X,S) (I)

and let area 2 have emittance

ca " caCX,B) (2)
and assume only that the emittance of both surfaces is independent

of circumferential angle 0 (Figure 1). This is the case for real sur-

faces prepared by sandblasting, plating, or etching.

For such a surface, the total emitted energy per unit time is
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Qe,l = CT,I °T_dAl (3)

where CT,I is the total hemispherical emittance given in this case

by

2 _ n/2
--J1_°[O ¢iI_i sin 8 cos 8 d8 d_

'T,I =' dT_ (4)

and Ik is the Planck spectral distribution of black-h:_y radiant,1 ¢

intensity.

If it is assumed that Qe,l' the total energy emitted per uDit

time by dAl, is composed of N of the energy bundles described pre-

viously, then the energy of each bundle, c, is simply

c * (5)
N

To determine the energy transferred from element d_ to surface

_, we now follow N bundles of energy through their emission from d/_,

and determine the number Sa absorbed at _. If the energy reflected

from b_ back to d/_ is neglected, the energy transferred per unit

time from dAI to A_ will be

_i-2 " cSa (6)

The next question is how is each individual, bundle path determined

and how is a wavelength assigned to each bundle? However this is

done, the directions and wavelengths of the N bundles must conform to

the constraints given by the emittance of the surface and the laws

governing radiative processes. For example, if we assign wavelengths

to N bundles, the spectral distribution of emitted energy generated

by the Monte Carlo process (comprised of the cNk d_ for discrete

intervals d_) must closely approximate the spectrum of the actual

emitted energy (plotted as _¢klkdk versus k). To ensure this, a

number of methods are available for choosing the energy-bundle pro-

perties [!* _]I. Leave the radiation problem monentarily for a

1 Numbers in brackets denote references
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physical interpretation of two common methods of choosing sample

properties.

Choosing Individual Events

Of the two methods to be outlined for randomly selecting events

in a manner that obeys the physical constraints of the problem, the

first is probably the most intuitively satisfying. It conslsts of

choosing events directly from the curve of known probability of an

event.

Consider the probability distribution of Figure 2(a), given

by the relation

P(_) lO00 (7a)

in the interval 0 _ _ _ i0 and p(_) - 0 elsewhere. Normalizing this

rel_tion by the area under the curve of Figure 2(a) gives

p(_) = P(_) = 3_a (7b)

j'_Op(_)d_ i000

Such a normalized probability curve is called a probability density

function.

lO lot __j3

p(_)_-_ .IP(_)_"Io_

iO00 ._e -- d_
REJECTED

"_ 4 VALUES---.-,.
ACCEPTED

.2 VALe.i ,; _ 8 _ a 4 6 8 ,o
VARIABLE.

(a)Probo.bDllty dis- (b) ProbQbillty den-

trlbution of sity of variQble
vGr|Qble _. _.

Figuze I. Examples of probability distributions

To choose values of _ in such a manner that Equation (Tb) is

satisfied by the distribution of chosen values, proceed as follows:

Two numbers, Ra and Rb, are chosen at random from a large set of

i|i.
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numbers evenly distributed in the range (0-i). On t'e digital computer,

such R values are selected randomly by means of either a random number

generating subroutine or from stored sequences of random nJmbers.

Choosing R values at randem epsures thet each event in a histroy will

be independent of preceding events.

The two random numbers are then usec __o select a peint P(_),

on Figure 2(b) by setting

P(_) = Ra; _ = Rb(_max - _min ) = lO'_b
l

This point is then compared to the val_e of P(_) at _ computed

from Equ=tion (7b). If the randomly selected value lies above the

computed value of P(_), then the randomly selected value of _ is

rejected and two new random numbers are selected. Otherwise, the

value _ that has been found is uced. Referring again to Figure 2(b),

it is seen that such a procedure ensures that the correct fraction of

values selected for use will lie in each increment d_ after enough

selections ace made.

The difficulty _th such an event choosing procedure is that in

some cases a large portion of the values of _ may be rejected. A

more efficient method of choo=ing _ is therefore desirable. The method

to be outlined is more efficient for many of the d_-_ributions which

occur in radiative-transfer Monte Carlo calculations.

This method is, in short, to integrate the probability density

function P(_) using the relation

R = _ P(_')d_' (8)

where R can only take on values in the range (0-I) because of the

properties of P(_). Equation (8) is known as the cumulative dis-

tribution function. The function R is then taken to be _ random

number, and values of _ are obtained by _hoosing R at random and

solving Equation (8) for the corresponding value of _. To show

that the probability density of _ chosen in this _say corresponds

to the required P(_), we can again examine the probability density

function of Figure 2(b).

Inserting the example P(_) of Equation (7b) into Equation (8)

gives

1967023903-010
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J{ _ (9) i_:R = eP(_')d{' = i000

'i[ _3

2
_.6

.... ---/i

.....o- _, 1 1 ,
0 2 4 6 B I0

VARIABLE,

Figure 3. Cu_lative distribution of example

Equation (9) is sho_ plotted in Fzgure 3. Divide the range of

into a number of equal increments 4{. Suppose M values of R are

now chosen in the range 0-i, and these M values are picked at equal

intervals along R. There will be M values of { which correspond to

these M values of R. The fraction of the M values of { which occurs

per given increment A{ is then

4{= A_ (to)

But AR/A_ is of course an approximation to (dR/d{) if a large enough

_,alue is chosen for M and small increments A{ are examined. But

dR/de can be seen from Equation (7) to be simply P(_) and it has been

sho_, therefore, that by choosing values of { in this manner the

required probability distribution is indeed satisfied.

A similar procedure for use when the probability distribution

is a nonseparable function of more than one variable is demonstrated

in reference [_]; for example, a reflectivity, which for real sur-

faces may have the probabilities of reflection into the angles of

reflection (B,B) depending on one another.

l||im
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Selection of Events for the Example Problem

To return to the problem at hand, the wavelength of emission for

the _Jtted bundle must be chosen.

It is assumed here that the surface properties are _roduct func-

tions of the two variables angle and wavelength, that is

¢(_,_)= ¢(4) e(_)

This assumption is valid for many actual surfaces, since the wave-

length variation of emittance, for example, rarely depends on angle of

emission. It follows, therefore, that dependence on either variable

may be found by integrating out the other variable. Then the normalized

probability of emission occuring in the interval dk is

p_/2

j_12 2_do ¢i(k,_)I_ sin _ cos 0 d_ d_
P(k) = F(k,0)d_ =

_T_T_ (i!)

Substituting into Equation (8) gives

2_I_/2¢i(_',_)I_, sin 0 cos 0 d_ d_'

R_ = ¢T_T_ (12)

if the number of bundles N is very large, and this equation was

solved for _ each time an R_ was chosen, computing time could

become too large for practical calculations. To circumvent this

problem, equations like Equation (12) can be numerically integrated

once over the range of 4, and a curve can be fitted to the result.

A polynomial curve is often adequate, as is the case in this problem,

giving

= A + B_ + C_ + (13)

This equation rather than Equation (12) is used in the problem-

solving program.

Following a similar procedure for the cone angle of emission

gives the relation

£fR_ = o oP(0 ,k)dk dO' =

;°f2n ¢1(_,O')Ixsin__ _' cos O' dX dO', O0 "

CTO_ (14)
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which can again be curve-fit to g_ve

= A' + B'R_ + C'R_ + . . . (15)

For gray, diffuse surfaces, Equation (12) reduces to

_o I_,d_'h

R_,gray - _T_ = Fo_ _ (16)

where Fo_ _ is the well-known fraction of black-body emission in the

wavelength interval (0-_). Equation (14) for this case reduces to

R_ = 2_ sin _' cos _' d_' = sin _ _i (17),gray o

or

sin El = R8 (18)

The point to be made here is that computational difficulty in

obtaining _ from either Equation (13) or (16) is not greatly different,

nor is it much different for obtaining _i from e_ther Equation (15)

or (18). The difference is mainly in the auxiliary numerical integrations

of Equations (12) and (14), which are performed once to get the

curve fits for the nongray-nondiffuse solution. As far as the

problem solving program is concerned, the more difficult case may just

as well be solved. Thus, increasing problem complexity leads to

only gradual increases in computer time.

For emission of an individual energy bundle from surfaae dA1, then,

a wavelength i can be chosen from Equation (13), and a cone angle of

emission _I can be chosen from Equation (15). There remains only

specification of the circumferential angle @l. Because of the

assumption made earlier that emission did not depend on el, it is

easily shown by the formalism outlined, and is also fairly obvious

from intuition, that @i can be determined by

: 2n%

Because the position of plane A_ with _espect to dA1 is known,

it is a simple matter to determine whether a given energy bundle will

strike A_ after leaving dA1 in direction (81,81). It will hit A_ if

cos 81 > O, as shown in Figure i. If it misses, another bundle must
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be emitted from dAl. if the bundle strikes As, it must be determined

whether it is abso£bed or reflected. To do this, geometry is used

to find the ang]e of incidence _2 of the bundle onto As.

cos _ = sin _I cos eI (20)

Knowing the absorptance of A_ from Kirchoff's Law

de(4,_) = ¢e(4,8) (21)

and having determined the wavelength _ of the incident bundle from

Equation (]3) and the incident angle Be from Equation (15), the

probability of absorption of tile bundle at Am can be determined.

The probabilily of absorption is simply the absorptance of Ae evalu-

ated at _ and _ because the directional spectral absorptance

_(_,_) is the fraction of energy incident on Ae (in a given wave-

length interval) from a given solid angle that is absorbed by the

surface. The absorptance is therefore tile probability-density

function for the absorption of incident energy. It is now easy to

determine whether a given incident energy bundle is absorbed by using

the first of the t_o event-choosing methods just outlined; that is,

by comparing the surface absorptance _e(_,_), which corresponds to

P(_), the probability of absorption, with a random number R . If
a

Lquation (22) is satisfied, the bundle of energy is absorbed and a

counter $2 is increased by one.

R_ _ _a(_,8) (22)

Otherwise, the bundle is assumed to be reflected and is henceforth

neglected. This neglect is reasonable if the absorptance of Am is

large, or if the directional reflectivity is such that few bundles

are reflected back in their original direction. If not, angles of

reflection must be chosen from known directional _eflectivities and

the bundle followed further along its path until absorption or loss

from the system. Fol the purposes of this example, little is to

be gained by following the bundle after reflection from surface

A_ because the derivation of the necessary relations is similar to

that already presented. The bundles are therfore neglected.

A new bundle is now chosen and its history followed. This

1967023903-014
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procedure is continued until all N bundles have been emitted from

dA1. The energy absorbed at A_ is then calculated from Equation

(6).

B values can be constrained to the range -_/2 < e < _/2. If

N bundles are emitted in this range, then the calculated heat trans-

fer will be

= cS__._a (23)
QI-2 2

The solution of this problem by Monte Carlo is now complete.

An astute observer will :xote that this example could be solved with-

out much difficulty by standard methods. A more astute observer

might note further that extension to only slightly more difficult

problems would cause serious consequences for the standard treat-

ments; for example, consider introducing a third surface with direc-

tional properties into the problem and accounting for all inter-

actions. On the other hand, the author has found few radiation

_roblems that will not yield to a Monte Carlo approach.

Advantases and Applications of Monte Carlo

Several means are available in the literature for solving

radiative transport problems. These methods have been called

"standard" or "conventional" methods herein, and include the techni-

ques developed by Poljak, Hottel, Oppenheim, and Gebhart [3,5,6,7]

as well as formulation in terms of integral equations. Each of these

has advantages for certain types of problems, and all will out-shine

the Monte Carlo approach in speed and accuracy over some limited

i
range of radiation calculations that is outlined roughly by the i

complexity of the problem.

The chief usefulness of Monte Carlo to the thermal radiation

analyst lles in this fact: Monte Carlo program complexity increases

approximately in proportion to problem complexity for radiative

interchange problems. This is an important advantage because con-

vectional methods increase approximately with the square of cam-

, plexity of the problem, due to the matrix form into which they fall.

However, because Monte Carlo is somewhat more difficult to apply to

the simplest problems, it is most ef_ectlve in problems where cam-

%

|
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plex geometries and variable p_operties must be considered. In

complex geometries, Monte Carlo has the advantage that simple relations

will specify the path of a given energy bundle, whereas most other

methods involve explicit or implicit integrations over surface

areas. Such integration becomes difficult whe,. a cariety of skewed

or curved surfaces are present.

Disadvantages of Monte Carlo Technique

Monte Carlo calculations give results which fluctuate arovnd

the real answer because the method is a repetitive experiment on

a mathematical model used in place of the actual physical situation.

The uncertainty cen usually be found by ap. lying the standard

statistical tests and can be reduced in the same manner as experi-

mental error, that is, by averaging over more tests (bundle histories).

No rigocous test exists to guarantee the convergence of the

Monte Carlo results to valid solutions. This has not as yet proven

to be a difficulty in thermal radiation problems. It would often

be immediately obvious that convergence to invalid solutions was

occurring because of the limiting solutions and physical constraints

which are known for most radiation problems.

Conclusions

Monte Carlo is discussed in the preceding section as a method

suitable for use in the solution of complex problems in radiative

transfer. A sample problem is outlined to demonstrate its applica-

tion and some of the advantages of the technique are discussed along

with pertinent literature references.

From all this, certain conclusions emerge. Monte Carlo appears

to have a definite advantage over other radiatlve-transfer calculation

techniques when the difficulty of the problem being treated lles

above some undefined level. Just where this level is cannot be

established, probably being a function of the experience, competence,

and prejudice of the individual working the problem. However,

pzoblems above this nebulous benchmark in complexity can be treated

with greater flexibility, simplicity, and speed. Monte Carlo does

lack a kind of generality common to oLher approaches in that each
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problem may require an individual technique, and a dash of ingenuity

often helps. This places a greater burden on the programmer's

backlog of experience and intuition where standard methods may allow

programming through "cookbook" application of their formalism.

For thermal-radiatlon problems, the parameters and the mathe-

matlcal relations involved lle in ranges which allow straightforward

Monte Carlo programming without the need of the more exotic schemes

occasionally necessary in other Monte Carlo transport studies.

With all its advantages, the method suffers from certain problems.

The worst of these are the statistical nature of the results, and

the lack of guaranteed convergence. It should be noted that the

latter fault is common to all methods when complex problems are

treated.

Finally, it must be commented that the person using Monte Carlo

techniques often develops a physical grasp of the problems encountered

because the model being analyzed is simple, and the mathematics

describing it are therefore on an unsophisticated basis easily

related to the physical model. This is in contrast to the rather

poor physical interpretations and predictions which we can make

when working with, say, a matrix of non-llnear second-order integro-

differential equations.

I

I

I

I

I

I

I m
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HOME PROBLEM STATEMENT

(a) Determille the heat flux from an elemental area "dAt" in

the horizontal plane to an infinite are_ "A_" in the vertical plane,

see Figure i. Consider the surfaces dA1 and A_ to be non-conductors

and that they are smooth and homogeneous so the Fresnel's equations

may be used to predict the properties of the two surfaces. For this

problem, the emittance is a function of the polar angle, _, and does

not depend on wavelength, 4, or the azimuth angle, e. The approxima-

tion to be used for the emittance and absorptance of both surfaces is

as follows:

¢ = @ = A(cos_) m

where

A = 0.92

and

m = 0.24

(b) Compare the values obtained from part (a) with the value

obtained from the diffuse assumption, ¢ _ ¢(_).

Section

I - Monte Carlo method

2 - Diffuse assumption

3 - Comparison of the two results

13
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PROBLEM SOLUTION

Fonte Carlo Method

The problem was solved by the procedure described by John Howell.

The following assumptions were made:

(i) Emission does not depend on azimuth angle, e.

(2) Emittance and absorptance are not a function of

wavelength, 4.

(3) Emittance and absorptance may be approximated by:

¢(_) = _(_) = 0.92 (cos_) 0"24

For this problem, three things must be determined for each bundle of

energy leaving dA1:

(I) Will the emitted bundle of energy strike A_?

(2) What is the cone angle of emission for each

bundle of energy leaving dA1?

(3) Will the bundle be absorbed b,r A_?

(I) As can be seen from Figure i, the bundle will strike A_ if

-_/2 < eI < _/2. If the azimuth angle is measured in this

manner, the cosine w_ll be positive in the range -n/2 < eI < _/2.

The azimuth angle, ez, for each bundle of energy emitted is deter-

mined from the following expression:

g_ = 2nR9

where It9 is a random number in the range of 0 to 1.0. If the

cosine of el is oqual to or less than zero, the bundle is re-

jected since it cannot strike surface Aa.

(2) If the coneine of el is greater than 0, the cone angle of

emission, _I, is determined from Equation 14 of the Monograph.

R_ = P(B') d_'

where

p(_=) = 2¢I(B1) sina I cosB I
CH

15
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For this probtem I!
)

Ct(_Z) = 0.92(cos_l) 0"24 )

and

_./2
¢ = 2Jo ('z(_' sin_'cos_'d_' _'

" [
CH : 2 (0,92)(cos_')0-24sin_'cos_'d_ '#o

CH = 2(0"92 _Jo sin_' (c°s_') 1"24d_'

CH = 2(0.92)2(0[92)-(c°s_')2"24"]rr/22.24Jo !I¢ = " = 0.8214
H 2.24

# JoR_ = 2 o P(_')d_' = 2(0.92) (cos_') 24sin13'd_'

2(0.92)[- (c°sO') 2"24_I2.24 ]o 2.24

RO = R_ = i - (cos_t) ,

solving for _I,

I )0.4464
cos_1 = (I-Ro)_ = (I-Ro

Ot = cos't (I-Ro) 0"4464

_I is the cone angle of emission for the bundle of energy being

followed.

(3) To determine if the bundle will be absorbed by surface _, the

geometry of the system and the absorptance of _ is found from

cos_ = sinOxcosOx

_ = cos'X[st.nSxcosOx]

calcutattng the absorptance of surface &,

_a (_a) = 0.92(cosl_,'J) 0"24 I
[

|ii
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The above expression, when evaluated at the given _, will be

the probability qf absorption of the energy bundle by surface

A_. In or@er to d_termine if the bundle is absorbed, the

probability of absorption, _2(_a), is compared to a random number

Ra. If Ra _ _(_a), the bundle of energy is absorbed by surface

Following is a flow chart of a computer program to perfol the

above calculations. The program is written to determine the fraction

of the energy emitted by surface dA1 that will be absorbed by surface

Computations for Diffuse Assumption

From the geometry of the system

FdAx _ A_ = 0.__

using

= _ I_/2
_ = CH 2(v.92) #o s(_)stn_cos_dB

2(0.92)
_ " 2.24 = 0.8214

.. the fraction of the energy emitted by dA1 that will be absorbed by

Fraction absorbed = FdA I _ _ _

= 0.5(0.8214)

- 0.4107

or 41.07% of the energy emitted by dA1 will be absorbed by surface

Comparlson of Results

Monte Carlo Method:

energy emitted by dA_ that will be absorbed = 35.7Z

by surface As.

Diffuse Assumption:

energy emitted by dAl that will be absorbed = 41.07Z

1967023903-022
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by surface A_.

A second counter was placed in the program to determine the

fraction of the energy emitted by dA1 that will s_rike surface A_.

This was done out of curiosity and as a check on the random number

selection by the subroutine. For this particular problem, it is

known that 1/2 of the energy leaving dA1 will strike surface Ae.

The computer arrived at a value of 50.48% which is off only 0.48%.

This degree of accuracy tends to build confidence in the ability of

the subroutine to generate truly random numbers, |

The program was run initially using I0,000 bundles of energy

leaving dA1. Since only 1/2 or 5000 bundles were tested for absorp-

tion, it was felt that this number was insufficient. The program

was run a second time using 20,000 bundles and the results were

within 1% of the first run. Through further research on the Monte

Carlo technique it was found that the possible error for this method

varies inversely with the square root of the number of bundles.

Merely inc.easing the bundles from i0,000 to 20,000 would have very

little effect on the results.

The over-all results obtained for the solution to this problem

seem very reasonable.

!
|

Im
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MONTE CARLO FLOW DIAGRAM

[ START I l c,..Lsu_ouT,.EI CALCULATE PERCENTAGEFOR RANDOM NO. RI_ OF ENERGY EMITTED BY
dA I THAT WILL STRIKE

1 1 su_c__
ICALCULATEPOLAR ANGLE % - --_-xI00READ I OF EMISSION

C,N 1 _,: cos-'(,-R#)°."464 1
} _ CALCULATE PERCENTAGE

INITIALIZE CALC'ULATE ANGLE OF OF ENERGY EMITTED BY
n =O INCIDENCE ON Az dA= THAT WILL BEn, =O

_ Sz = O _i_ = cos-_(sin/_!cose I) ABSORBED BY Az

G 1 1 . s_
EMIT A _ x IOO

ICALCULATE ABSORPTANCE l ,,
BUNDLE I OF SURFACE A2 i 1

FLL OOOT'NI l CLLUOUT'NIRANDOM NO. Re FOR RANDOM NO. Ra
i

COMPUTE AZIMUTH I NO
ANGLE I REJ EC'I_:

, el = 2/1" Re I BUNDLE

COUNT BUNDLES

NO THAT ARE ABSORBED
BY A2

, s,2. s,2+,L,

tY_S
cou.__u.o[.Es

THAT STRIKE ' NO
SURFACE A2 EMIT = Lt)

nI = nl + I "_/ ANOTHER
[ rYES BUNDLE
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